Recent Changes in Downward Longwave Radiation at King Sejong Station, Antarctica

Author:

Cho Hi Ku1,Kim Jhoon1,Jung Yeonjin1,Lee Yun Gon1,Lee Bang Yong2

Affiliation:

1. Global Environment Laboratory/Department of Atmospheric Sciences, Yonsei University, Seoul, South Korea

2. Korea Polar Research Institute, KORDI, Inchun, South Korea

Abstract

Abstract Effects of cloud, air temperature, and specific humidity on downward longwave irradiance and their long-term variabilities are examined by analyzing the measurements made at the King Sejong Station in the Antarctic Peninsula during the period of 1996–2006. It has been shown that the downward longwave irradiance (DLR) is significantly correlated with three variables: air temperature, specific humidity, and cloudiness. Based on the relationship of the three variables with DLR, a multiple linear regression model has been developed in order to evaluate the relative contribution of each of the variables to the variation of DLR. The three variables together explained 75% of all the variance in daily mean DLR. The respective contribution from specific humidity and cloudiness to the variation of DLR was 46% and 23%; thus most of the DLR variability can be explained by the variations in the two variables. The annual mean of longwave cloud forcing shows 52 W m−2 with no remarkable seasonal cycle. It is also noted that the overcast cloud effect gives an increase by 65 W m−2 with respect to clear-sky flux throughout the year. It is suggested that the multiple regression model can be used to estimate the radiative forcings of variables influencing the DLR variability. A highly significant decrease in DLR with an average of −1.52 W m−2 yr−1 (−0.54% yr−1) is found in an analysis from the time series of the deseasonalized monthly mean values. Accordingly, the atmospheric flux emissivity, air temperature, and specific humidity have also decreased in their time series, while the cloudiness has increased insignificantly. Consequently, it may be concluded that the recent decrease in DLR is mainly attributed to the net cooling effect due to the decrease in air temperature and specific humidity, which overwhelm the slight warming effect in cloudiness. Analysis of mean monthly trends for individual months shows that, as for the annual data, the variations in DLR are mostly associated with those of air temperature, specific humidity, and cloudiness.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference31 articles.

1. Effects of solar radiation on the performance of pyrgeometers with silicon domes.;Alados-Arboledas;J. Atmos. Oceanic Technol.,1988

2. Recent interannual variations in solar radiation, cloudiness, and surface temperature at the South Pole.;Dutton;J. Climate,1991

3. Eppley , 2006: Precision Infrared Radiometer, Mode PIR Instruction sheet. The Eppley Laboratory, 4 pp.

4. Method of Correlation and Regression Analysis.;Ezekiel,1966

5. A new look at calibration and use of Eppley Precision Infrared Radiometers. Part I: Theory and application.;Fairall;J. Atmos. Oceanic Technol.,1998

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3