Damaging Surface Wind Mechanisms within the 10 June 2003 Saint Louis Bow Echo during BAMEX

Author:

Atkins Nolan T.1,Bouchard Christopher S.1,Przybylinski Ron W.2,Trapp Robert J.3,Schmocker Gary2

Affiliation:

1. Lyndon State College, Lyndonville, Vermont

2. National Weather Service, Saint Charles, Missouri

3. Purdue University, West Lafayette, Indiana

Abstract

Abstract Detailed radar and damage survey analyses of a severe bow echo event that occurred on 10 June 2003 during the Bow Echo and Mesoscale Convective Vortex (MCV) Experiment are presented. A bow echo formed just east of Saint Louis, Missouri, and produced a continuous straight-line wind damage swath approximately 8 km in width and 50 km in length along with five F0–F1 tornadoes. Careful superposition of the damage survey analysis and Weather Surveillance Radar-1988 Doppler (WSR-88D) data from Saint Charles, Missouri (KLSX), showed that the primary straight-line wind damage swath was not collocated with the bow echo apex as has been suggested in previous studies. Rather, the primary damage swath was found north of the bow apex, collocated with a low-level vortex that formed on the leading edge of the bow echo. Much of the primary damage swath appeared to have been created by the low-level vortex. Moreover, most of the surface straight-line wind damage was generated during the early stages of bow echo morphology prior to when the radar-detected bow echo attributes were best defined. Detailed analysis of the KLSX radar data revealed the genesis of 11 low-level meso-γ-scale vortices within the convective system. Superposition of the damage survey data showed that five of the vortices were tornadic. Careful analysis of the radar data suggests that it may be possible to distinguish between the tornadic and nontornadic vortices. Consistently, the tornadic vortices were longer-lived and stronger at low levels [0–3 km above ground level (AGL)] and rapidly deepened and intensified just prior to tornadogenesis. Similar evolution was not observed with the nontornadic vortices. All of the tornadic vortices formed coincident with or after the genesis time of the rear-inflow jet. These results suggest that the rear-inflow jet may be important for creating tornadic vortices within bow echoes. The detection and warning implications of these results are discussed.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference43 articles.

1. Atkins, N. T., and R. W.Przybylinski, 2000: Radar and damage analysis of the 27 May 2000 tornadic derecho event. Preprints, 21st Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., 567–570.

2. Vortex structure and evolution within bow echoes. Part I: Single-Doppler and damage analysis of the 29 June 1998 derecho.;Atkins;Mon. Wea. Rev.,2004

3. Burgess, D. W., and B. F.Smull, 1990: Doppler radar observations of a bow echo associated with a long-track severe windstorm. Preprints, 16th Conf. on Severe Local Storms, Kananaskis Park, AB, Canada, Amer. Meteor. Soc., 203–208.

4. The bow echo and MCV experiment (BAMEX): Observations and opportunities.;Davis;Bull. Amer. Meteor. Soc.,2004

5. Examination of derecho environments using proximity soundings.;Evans;Wea. Forecasting,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3