Dynamics of Convectively Driven Banded Jets in the Laboratory

Author:

Read Peter L.1,Yamazaki Yasuhiro H.1,Lewis Stephen R.1,Williams Paul D.1,Wordsworth Robin1,Miki-Yamazaki Kuniko1,Sommeria Joël2,Didelle Henri2

Affiliation:

1. Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, United Kingdom

2. LEGI Coriolis, Grenoble, France

Abstract

Abstract The banded organization of clouds and zonal winds in the atmospheres of the outer planets has long fascinated observers. Several recent studies in the theory and idealized modeling of geostrophic turbulence have suggested possible explanations for the emergence of such organized patterns, typically involving highly anisotropic exchanges of kinetic energy and vorticity within the dissipationless inertial ranges of turbulent flows dominated (at least at large scales) by ensembles of propagating Rossby waves. The results from an attempt to reproduce such conditions in the laboratory are presented here. Achievement of a distinct inertial range turns out to require an experiment on the largest feasible scale. Deep, rotating convection on small horizontal scales was induced by gently and continuously spraying dense, salty water onto the free surface of the 13-m-diameter cylindrical tank on the Coriolis platform in Grenoble, France. A “planetary vorticity gradient” or “β effect” was obtained by use of a conically sloping bottom and the whole tank rotated at angular speeds up to 0.15 rad s−1. Over a period of several hours, a highly barotropic, zonally banded large-scale flow pattern was seen to emerge with up to 5–6 narrow, alternating, zonally aligned jets across the tank, indicating the development of an anisotropic field of geostrophic turbulence. Using particle image velocimetry (PIV) techniques, zonal jets are shown to have arisen from nonlinear interactions between barotropic eddies on a scale comparable to either a Rhines or “frictional” wavelength, which scales roughly as (β/Urms)−1/2. This resulted in an anisotropic kinetic energy spectrum with a significantly steeper slope with wavenumber k for the zonal flow than for the nonzonal eddies, which largely follows the classical Kolmogorov k−5/3 inertial range. Potential vorticity fields show evidence of Rossby wave breaking and the presence of a “hyperstaircase” with radius, indicating instantaneous flows that are supercritical with respect to the Rayleigh–Kuo instability criterion and in a state of “barotropic adjustment.” The implications of these results are discussed in light of zonal jets observed in planetary atmospheres and, most recently, in the terrestrial oceans.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Extra invariant and plasma inhomogeneity to improve zonal flow;Physics of Plasmas;2024-02-01

2. Zonostrophic instabilities in magnetohydrodynamic Kolmogorov flow;Geophysical & Astrophysical Fluid Dynamics;2023-11-06

3. Zonal jets experiments in the gas giants’ zonostrophic regime;Icarus;2023-01

4. Moist Convection in the Giant Planet Atmospheres;Remote Sensing;2022-12-30

5. A Laboratory Model for a Meandering Zonal Jet;Journal of Advances in Modeling Earth Systems;2022-06-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3