Topographic Instability: Tests

Author:

Egger Joseph1,Hoinka Klaus-Peter2

Affiliation:

1. Meteorologisches Institut der Universität Munich, Munich, Germany

2. DLR, Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany

Abstract

Abstract Theories of topographic instability predict growth of perturbations of mean flow and wave modes due to their interaction with mountains under favorable conditions. Mountain torques form an important part of this interaction. It has been suggested that topographic instabilities contribute significantly to the subseasonal variability of the atmosphere but observational tests of topographic instability mechanisms have not yet been performed. Greenland is selected as a test bed because of its isolation, simple shape, and appropriate size. The observed flow development during mountain torque events is investigated in terms of a regression analysis. Changes of axial angular momentum and zonal mean wind with respect to the torques are monitored for domains covering Greenland since the acceleration (deceleration) of the regional zonal flow in response to a positive (negative) torque is a key feature of topographic instability. In particular, southern and northern analysis domains are considered separately in order to test “dipole” instability theories in addition to “monopole” situations where the meridional extent of the pressure perturbations is similar to that of Greenland. Moreover, zonal bands are used as analysis domains. It is found that the response of the zonal wind to the torques is quite small and not systematic. There is no evidence of monopole or dipole topographic instability. A less detailed analysis for the Tibetan Plateau leads to the same result. Reasons for these negative outcomes are discussed as are shortcomings of the tests.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3