Interaction of Upper-Tropospheric Turbulence and Gravity Waves as Obtained from Spectral and Structure Function Analyses

Author:

Lu Chungu1,Koch Steven E.1

Affiliation:

1. NOAA/Earth System Research Laboratory, Boulder, Colorado

Abstract

Abstract Spectral and structure function analyses of horizontal velocity fields observed in the upper troposphere and lower stratosphere during the Severe Clear Air Turbulence Collides with Air Traffic (SCATCAT) field program, conducted over the Pacific, were carried out in an effort to identify the scale interactions of turbulence and small-scale gravity waves. Because of the intermittent nature of turbulence, these analyses were conducted by clearly separating out the cases when turbulence did or did not occur in the data. In the presence of turbulence, transitional power spectra from k−2 to k−5/3 were found to be associated with gravity waves and turbulence, respectively. The second-order structure function analysis was able to translate these spectral slopes into r and r 2/3 scaling, consistent with the Monin and Yaglom conversion law, in physical space, which presented clearer pictures of scale interactions between turbulence and gravity waves. The third-order structure function analysis indicated the existence of a narrow region of inverse energy cascade from the scales of turbulence up to the gravity waves scales. This inverse energy cascade region was linked to the occurrence of Kelvin–Helmholtz instability and other wave-amplifying mechanisms, which were conjectured to lead to the breaking of small-scale gravity waves and the ensuing generation of turbulence. The multifractal analyses revealed further scale breaks between gravity waves and turbulence. The roughness and intermittent properties were also calculated for turbulence and gravity waves, respectively. Based on these properties, turbulence and gravity waves in a bifractal parameter space were mapped. In this way, their physical and statistical attributes were clearly manifested and understood.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference46 articles.

1. Modal and nonmodal perturbations of monochromatic high-frequency gravity waves: Primary nonlinear dynamics.;Achatz;J. Atnos. Sci.,2007

2. Gravity-wave breaking: Linear and primary nonlinear dynamics.;Achatz;Adv. Space Res.,2007

3. Stratospheric horizontal wavenumber spectra of winds, potential temperature and atmospheric tracers observed by high-altitude aircraft.;Bacmeister;J. Geophys. Res.,1996

4. Turbulence spectra in a stably stratified atmosphere.;Bolgiano;J. Geophys. Res.,1959

5. On shear-generated gravity waves that reach the mesosphere. Part I: Wave generation.;Bühler;J. Atmos. Sci.,1999

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3