The Capacitance of Pristine Ice Crystals and Aggregate Snowflakes

Author:

Westbrook Christopher David1,Hogan Robin J.1,Illingworth Anthony J.1

Affiliation:

1. Department of Meteorology, University of Reading, Reading, United Kingdom

Abstract

Abstract A new method of accurately calculating the capacitance of realistic ice particles is described: such values are key to accurate estimates of deposition and evaporation (sublimation) rates in numerical weather models. The trajectories of diffusing water molecules are directly sampled, using random “walkers.” By counting how many of these trajectories intersect the surface of the ice particle (which may be any shape) and how many escape outside a spherical boundary far from the particle, the capacitances of a number of model ice particle habits have been estimated, including hexagonal columns and plates, “scalene” columns and plates, bullets, bullet rosettes, dendrites, and realistic aggregate snowflakes. For ice particles with sharp edges and corners this method is an efficient and straightforward way of solving Laplace’s equation for the capacitance. Provided that a large enough number of random walkers are used to sample the particle geometry (∼104) the authors expect the calculated capacitances to be accurate to within ∼1%. The capacitance for the modeled aggregate snowflakes (C/Dmax = 0.25, normalized by the maximum dimension Dmax) is shown to be in close agreement with recent aircraft measurements of snowflake sublimation rates. This result shows that the capacitance of a sphere (C/Dmax = 0.5), which is commonly used in numerical models, overestimates the evaporation rate of snowflakes by a factor of 2. The effect of vapor “screening” by crystals growing in the vicinity of one another has also been investigated. The results clearly show that neighboring crystals growing on a filament in cloud chamber experiments can strongly constrict the vapor supply to one another, and the resulting growth rate measurements may severely underestimate the rate for a single crystal in isolation (by a factor of 3 in this model setup).

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 84 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3