Tropical Climate Regimes and Global Climate Sensitivity in a Simple Setting

Author:

Barsugli Joseph1,Shin Sang-Ik1,Sardeshmukh Prashant D.1

Affiliation:

1. NOAA–CIRES Climate Diagnostics Center, Boulder, Colorado

Abstract

Abstract Multiple tropical climate regimes are found in an atmospheric general circulation model (AGCM) coupled to a global slab ocean when the model is forced by different values of globally uniform insolation. Even in this simple setting, convection organizes into an intertropical convergence zone (ITCZ) solely due to the effect of planetary rotation, as was found in Kirtman and Schneider, for a single value of insolation. Here the response to a range of insolation values is explored, and surprisingly, multiple climate regimes characterized by radically different ITCZ structures are found. In order from the coldest to warmest climates, these are a symmetric double ITCZ, a near-symmetric equatorial ITCZ, a transient asymmetric ITCZ, and a stable, strongly asymmetric ITCZ. The model exhibits hysteresis in the transition from the near-symmetric to the strongly asymmetric ITCZ regimes when insolation is increased and then decreased. The initial transition away from symmetry can occur in the absence of air–sea coupling; however, the coupling is essential for the establishment and maintenance of the strongly asymmetric ITCZ. Wind–evaporation–SST feedback as well as the longwave radiative effects of clouds and water vapor on SSTs appear to be important in maintaining the asymmetric regime. The existence of multiple regimes in a single AGCM, and the dependence of these regimes on SST feedbacks, may have a bearing on the ITCZ simulation errors of current coupled climate models. The sensitivity of the global mean surface temperature generally decreases with increasing insolation, a consequence primarily of increasingly negative shortwave cloud forcing. Climate sensitivity measured across a regime transition can be much larger than the sensitivity within a single regime.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3