Monsoon Mission: A Targeted Activity to Improve Monsoon Prediction across Scales

Author:

Rao Suryachandra A.,Goswami B. N.,Sahai A. K.,Rajagopal E. N.,Mukhopadhyay P.,Rajeevan M.,Nayak S.,Rathore L. S.,Shenoi S. S. C.,Ramesh K. J.,Nanjundiah R. S.,Ravichandran M.,Mitra A. K.,Pai D. S.,Bhowmik S. K. R.,Hazra A.,Mahapatra S.,Saha S. K.,Chaudhari H. S.,Joseph S.,Sreenivas P.,Pokhrel S.,Pillai P. A.,Chattopadhyay R.,Deshpande M.,Krishna R. P. M.,Das Renu S.,Prasad V. S.,Abhilash S.,Panickal S.,Krishnan R.,Kumar S.,Ramu D. A.,Reddy S. S.,Arora A.,Goswami T.,Rai A.,Srivastava A.,Pradhan M.,Tirkey S.,Ganai M.,Mandal R.,Dey A.,Sarkar S.,Malviya S.,Dhakate A.,Salunke K.,Maini Parvinder

Abstract

AbstractIn spite of the summer monsoon’s importance in determining the life and economy of an agriculture-dependent country like India, committed efforts toward improving its prediction and simulation have been limited. Hence, a focused mission mode program Monsoon Mission (MM) was founded in 2012 to spur progress in this direction. This article explains the efforts made by the Earth System Science Organization (ESSO), Ministry of Earth Sciences (MoES), Government of India, in implementing MM to develop a dynamical prediction framework to improve monsoon prediction. Climate Forecast System, version 2 (CFSv2), and the Met Office Unified Model (UM) were chosen as the base models. The efforts in this program have resulted in 1) unparalleled skill of 0.63 for seasonal prediction of the Indian monsoon (for the period 1981–2010) in a high-resolution (∼38 km) seasonal prediction system, relative to present-generation seasonal prediction models; 2) extended-range predictions by a CFS-based grand multimodel ensemble (MME) prediction system; and 3) a gain of 2-day lead time from very high-resolution (12.5 km) Global Forecast System (GFS)-based short-range predictions up to 10 days. These prediction skills are on par with other global leading weather and climate centers, and are better in some areas. Several developmental activities like coupled data assimilation, changes in convective parameterization, cloud microphysics schemes, and parameterization of land surface processes (including snow and sea ice) led to the improvements such as reducing the strong model biases in the Indian summer monsoon simulation and elsewhere in the tropics.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3