Affiliation:
1. Met Office, Exeter, United Kingdom
Abstract
AbstractTheories of the interaction between moist convection and the atmospheric circulation in the tropics are reviewed. Two main schools of thought are highlighted: (i) one that emphasizes the lower-level control of convection through moisture convergence and variations in convective inhibition, and (ii) one that sees convection as an adjustment process in reaction to larger-scale instabilities, referred to as convective quasi-equilibrium theory. Conceptually the two views consider moist convection to have fundamentally different roles in the tropical circulation. In one case the presence of low-level inhibition and the conditional nature of the atmospheric instability allows for convective vertical motion and latent heating to drive and reinforce synoptic-scale disturbances and overturning circulations; in the other case, because low-level inhibition is not acknowledged to be a widespread controlling barrier, convection is believed to balance and dampen vertical instabilities at the rate they are created by larger-scale processes over the vertical extent of the atmosphere. More recently, investigations of the moisture dynamics surrounding organized convective structures have led to an emerging consensus on the theory of convection–circulation coupling in the tropics that acknowledges the important role of lower- to midtropospheric moisture variations, and the significance of moist convection and convective clouds for initiating and establishing circulations. However, the implementation of these new insights in numerical models lags behind. This is exemplified by the apparent inadequacy of climate models to correctly represent decadal variability in the tropical Pacific, a fact that potentially has implications for the confidence in climate change projections based on such models.
Publisher
American Meteorological Society
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献