Rewriting the Tropical Record Books: The Extraordinary Intensification of Hurricane Patricia (2015)

Author:

Rogers Robert F.1,Aberson Sim1,Bell Michael M.2,Cecil Daniel J.3,Doyle James D.4,Kimberlain Todd B.5,Morgerman Josh6,Shay Lynn K.7,Velden Christopher8

Affiliation:

1. NOAA/Atlantic Oceanographic and Meteorological Laboratory/Hurricane Research Division, Miami, Florida

2. Colorado State University, Fort Collins, Colorado

3. NASA Marshall Space Flight Center, Huntsville, Alabama

4. Naval Research Laboratory, Monterey, California

5. NOAA/NWS/National Hurricane Center, Miami, Florida

6. iCyclone, West Hollywood, California

7. Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, Florida

8. Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin–Madison, Madison, Wisconsin

Abstract

Abstract Hurricane Patricia was a historic tropical cyclone that broke many records, such as intensification rate, peak intensity, and overwater weakening rate, during its brief 4-day lifetime in late October 2015 in the eastern Pacific basin. Patricia confounded all of the intensity forecast guidance owing to its rapid intensity changes. Fortunately, the hurricane-penetrating National Oceanic and Atmospheric Administration WP-3D and U.S. Air Force C-130 aircraft and the National Aeronautics and Space Administration WB-57 high-altitude jet, under support of the Office of Naval Research, conducted missions through and over Patricia prior to and during its extreme intensity changes on all 4 days, while an extensive array of pressure sensors sampled Patricia after landfall. The observations collected from these missions include traditional data sources such as airborne Doppler radar and flight-level instruments as well as new data sources like a high-density array of dropsondes released from high-altitude and wide-swath radiometer. The combination of data from these sources and from satellites provides an excellent opportunity to investigate the physical processes responsible for Patricia’s structure and evolution and offers the potential to improve forecasts of tropical cyclone rapid intensity changes. This paper provides an overview of Patricia as well as the data collected during the aircraft missions.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3