Positive Feedback in Climate: Stabilization or Runaway, Illustrated by a Simple Experiment

Author:

Dufresne Jean-Louis1,Saint-Lu Marion2

Affiliation:

1. LMD-IPSL, Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, Ecole Normale Supérieure, Ecole Polytechnique, Paris, France

2. LSCE-IPSL, Centre National de la Recherche Scientifique, Commissariat à l’Energie Atomique, Université de Versailles Saint-Quentin, Gif-sur-Yvette, France

Abstract

Abstract The response of the various climatic processes to climate change can amplify (positive feedback) or damp (negative feedback) the initial temperature perturbation. An example of a positive feedback is the surface albedo feedback: when the surface temperature rises, part of the ice and snow melts, leading to an increase in the solar radiation absorbed by the surface and to an enhanced surface warming. Positive feedbacks can lead to instability. On Venus, for example, a positive feedback is thought to have evolved into a runaway greenhouse effect. However, positive feedbacks can exist in stable systems. This paper presents a simple representation of a positive feedback in both a stable and an unstable system. A simple experimental device based on a scale principle is introduced to illustrate the positive feedback and its stabilization or runaway regimes. Stabilization can be achieved whether the amplitude of the positive feedback declines (e.g., “saturation” of the feedback) or remains constant. The device can also be used to illustrate the existence of tipping points, which are threshold values beyond which the amplification due to feedbacks or the stability of the system suddenly changes. The physical equations of the device are established in the framework of the feedback analysis. Key features to understand why a positive feedback does not necessarily lead to a runaway effect are described. The analogy between the different components of the device and those of the climate system is established. Finally, the contribution of individual feedbacks to the total climate response is addressed.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Greening of vegetation in northwest India causes positive shortwave radiative forcing;2024-01-08

2. From the Climates of the Past to the Climates of the Future;Frontiers in Earth Sciences;2020-11-08

3. Clouds and Climate;2020-08-20

4. Index;Clouds and Climate;2020-08-20

5. Clouds andWarming;Clouds and Climate;2020-08-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3