CROSSINN: A Field Experiment to Study the Three-Dimensional Flow Structure in the Inn Valley, Austria

Author:

Adler Bianca1,Gohm Alexander2,Kalthoff Norbert1,Babić Nevio1,Corsmeier Ulrich1,Lehner Manuela2,Rotach Mathias W.2,Haid Maren2,Markmann Piet3,Gast Eckhard3,Tsaknakis George4,Georgoussis George4

Affiliation:

1. Karlsruhe Institute of Technology, Karlsruhe, Germany

2. University of Innsbruck, Innsbruck, Austria

3. METEX GmbH, Elmshorn, Germany

4. Raymetrics S.A., Athens, Greece

Abstract

AbstractWhile the exchange of mass, momentum, moisture, and energy over horizontally homogeneous, flat terrain is mostly driven by vertical turbulent mixing, thermally and dynamically driven mesoscale flows substantially contribute to the Earth–atmosphere exchange in the atmospheric boundary layer over mountainous terrain (MoBL). The interaction of these processes acting on multiple scales leads to a large spatial variability in the MoBL, whose observational detection requires comprehensive instrumentation and a sophisticated measurement strategy. We designed a field campaign that targets the three-dimensional flow structure and its impact on the MoBL in a major Alpine valley. Taking advantage of an existing network of surface flux towers and remote sensing instrumentation in the Inn Valley, Austria, we added a set of ground-based remote sensing instruments, consisting of Doppler lidars, a ceilometer, a Raman lidar, and a microwave radiometer, and performed radio soundings and aircraft measurements. The objective of the Cross-Valley Flow in the Inn Valley Investigated by Dual-Doppler Lidar Measurements (CROSSINN) experiment is to determine the mean and turbulent characteristics of the flow in the MoBL under different synoptic conditions and to provide an intensive dataset for the future validation of mesoscale and large-eddy simulations. A particular challenge is capturing the two-dimensional kinematic flow in a vertical plane across the whole valley using coplanar synchronized Doppler lidar scans, which allows the detection of cross-valley circulation cells. This article outlines the scientific objectives, instrument setup, measurement strategy, and available data; summarizes the synoptic conditions during the measurement period of 2.5 months; and presents first results.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3