The Making of a Metric: Co-Producing Decision-Relevant Climate Science

Author:

Jagannathan Kripa1,Jones Andrew D.2,Ray Isha3

Affiliation:

1. Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, and Energy and Resources Group, University of California, Berkeley, Berkeley, California

2. Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, California

3. Energy and Resources Group, University of California, Berkeley, Berkeley, California

Abstract

AbstractDeveloping decision-relevant science for adaptation requires the identification of climatic parameters that are both actionable for practitioners as well as tractable for modelers. In many sectors, these decision-relevant climatic metrics and the approaches that enable their identification remain largely unknown. “Co-production” of science with scientists and decision-makers is one potential way to identify these metrics, but there is little research describing specific and successful co-production approaches. This paper examines the negotiations and outcomes from Project Hyperion, wherein scientists and water managers jointly developed decision-relevant climatic metrics for adaptive water management. We identify successful co-production strategies by analyzing the project’s numerous back-and-forth engagements and tracing the evolution of the science during these engagements. We found that effective mediation between scientists and managers needed dedicated “boundary spanners” with significant modeling expertise. Translating practitioners’ information needs into tractable climatic metrics required direct and indirect methods of eliciting knowledge. We identified four indirect methods that were particularly salient for extracting tacitly held knowledge and enabling shared learning: developing a hierarchical framework linking management issues with metrics, starting discussions from the planning challenges, collaboratively exploring the planning relevance of new scientific capabilities, and using analogies of other “good” metrics. The decision-relevant metrics we developed provide insights into advancing adaptation-relevant climate science in the water sector. The co-production strategies we identified can be used to design and implement productive scientist–decision-maker interactions. Overall, the approaches and metrics we developed can help climate science to expand in new and more use-inspired directions.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference86 articles.

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3