Combining Crowdsourcing and Deep Learning to Explore the Mesoscale Organization of Shallow Convection

Author:

Schulz Hauke1,Bony Sandrine2,Stevens Bjorn1

Affiliation:

1. Max Planck Institute for Meteorology, Hamburg, Germany

2. Sorbonne Université, LMD/IPSL, CNRS, Paris, France

Abstract

AbstractHumans excel at detecting interesting patterns in images, for example, those taken from satellites. This kind of anecdotal evidence can lead to the discovery of new phenomena. However, it is often difficult to gather enough data of subjective features for significant analysis. This paper presents an example of how two tools that have recently become accessible to a wide range of researchers, crowdsourcing and deep learning, can be combined to explore satellite imagery at scale. In particular, the focus is on the organization of shallow cumulus convection in the trade wind regions. Shallow clouds play a large role in the Earth’s radiation balance yet are poorly represented in climate models. For this project four subjective patterns of organization were defined: Sugar, Flower, Fish, and Gravel. On cloud-labeling days at two institutes, 67 scientists screened 10,000 satellite images on a crowdsourcing platform and classified almost 50,000 mesoscale cloud clusters. This dataset is then used as a training dataset for deep learning algorithms that make it possible to automate the pattern detection and create global climatologies of the four patterns. Analysis of the geographical distribution and large-scale environmental conditions indicates that the four patterns have some overlap with established modes of organization, such as open and closed cellular convection, but also differ in important ways. The results and dataset from this project suggest promising research questions. Further, this study illustrates that crowdsourcing and deep learning complement each other well for the exploration of image datasets.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3