Equatorial Solitary Waves. Part V: Initial Value Experiments, Coexisting Branches, and Tilted-Pair Instability

Author:

Boyd John P.1

Affiliation:

1. Department of Atmospheric, Oceanic and Space Science, University of Michigan, Ann Arbor, Michigan

Abstract

AbstractA series of high-resolution numerical experiments, augmented by theory, to further explore the dynamics of equatorial dipole vortices (Rossby solitary waves) is performed. When the amplitude is sufficiently large so that the vortices trap fluid internally, the solitary waves for a given phase speed are not unique. The potential vorticity–streak function (q–Ψ) relationship is everywhere linear for one branch, but highly nonlinear in the recirculation region for the second branch. Westward-traveling vortex pairs are highly unstable on the midlatitude beta plane, but the equatorial wave guide stabilizes vortex pairs that straddle the equator, even when given a strong initial tilt. As discovered by Williams and Wilson and explained theoretically by Boyd, the author confirms that higher latitudinal mode solitary waves are weakly nonlocal through radiation of sinusoidal Rossby waves of lower latitudinal mode number. The amplitude and wavelength of the radiation are in good agreement with nonlocal soliton theory.It is sometimes said that the great discovery of the nineteenth century was that the equations of nature were linear, and the great discovery of the twentieth century is that they are not.—Thomas Körner, Fourier Analysis (1988, p. 99)

Publisher

American Meteorological Society

Subject

Oceanography

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Miracles, misconceptions and scotomas in the theory of solitary waves;Geophysical & Astrophysical Fluid Dynamics;2019-08-20

2. Multi-scale Methods for Geophysical Flows;Mathematics of Planet Earth;2019

3. Nonlinear Wavepackets and Nonlinear Schroedinger Equation;Dynamics of the Equatorial Ocean;2017-09-27

4. Nonlinear Equatorial Waves;Dynamics of the Equatorial Ocean;2017-09-27

5. Dynamics of Ideal Fluid on a Sphere;Mathematical Problems of the Dynamics of Incompressible Fluid on a Rotating Sphere;2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3