Long-Term Observations of Tropical Instability Waves

Author:

Contreras Robert F.1

Affiliation:

1. Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Abstract

Abstract Reynolds sea surface temperature (SST) data showing tropical instability waves (TIWs) in the tropical Pacific are analyzed along with current measurements from the Tropical Atmosphere–Ocean (TAO) buoy array and wind speeds from the European Remote Sensing Satellite (ERS) -1 and -2 scatterometers. TIWs are visible as undulations in the SST cold fronts that delineate the northern and southern boundaries of the cold tongue in the equatorial Pacific. The SST pattern results from advection of the SST front by instabilities in the near-surface equatorial currents. Although the waves are seen on both sides of the Pacific cold tongue and north of the equator in the Atlantic, they are most intense, and thereby most observable, in the north equatorial Pacific. The combination of data used in this analysis provides information about these waves, the factors controlling them, and their coupling to the atmosphere on annual and interannual timescales. On annual timescales, the TIWs generally establish a strong signal in July east of about 140°W with a westward phase speed of about 0.5 m s−1. By August, the waves usually occupy the longitudes between 160° and 100°W and continue to propagate west at roughly the same speed. With the onset of the warm season in the equatorial cold tongue (spring), the signal typically weakens and the propagation speeds show large variations. On interannual timescales, activity is strongest during the cold phase of the ENSO cycle (La Niña) when the cold tongue is most pronounced; the waves are weak or nonexistent during the warm phase of ENSO (El Niño) when the SST front is weak. The TIW signature in SST is noticeable throughout all seasons of the year provided that the gradient in SST at 140°W is greater than about 0.25°C (100 km)−1. In addition, analysis of the currents underlines the importance of the background currents to the zonal propagation speeds.

Publisher

American Meteorological Society

Subject

Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3