Single-Scattering Properties of Aggregates of Bullet Rosettes in Cirrus

Author:

Um Junshik1,McFarquhar Greg M.1

Affiliation:

1. Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois

Abstract

Abstract During the March 2000 Cloud Intensive Operational Period, the University of North Dakota Citation executed spiral descents through midlatitude cirrus of a nonconvective origin over the Atmospheric Radiation Measurement Program’s Southern Great Plains site. Aggregates of bullet rosettes (ABRs) observed during the descents using a cloud particle imager are used to derive a relationship between the length L and width W of bullets that are the fundamental components of the ABRs, which is given by W = 7.14L0.455, where 100 μm ≤ L ≤ 600 μm. To derive a representation of an aggregate of bullet rosettes, six bullet rosettes, each of which is composed of six bullets of the same size but each of which has different-sized bullets from the other bullet rosettes, are attached together randomly without overlap. Using a geometric ray-tracing method, the phase function, asymmetry parameter g, and single-scattering albedo of the representation of ABR (rABR) and the component bullets and bullet rosettes are calculated at wavelengths λ of 0.55, 0.64, 1.38, 1.62, 2.11, and 3.78 μm. As the aspect ratio of the component bullets increases, the forward scattering increases by up to 1.3% and the lateral and backward scattering decrease by up to 8.9% and 10.2%, respectively, for a bullet rosette at a nonabsorbing λ (0.55 μm). For longer λ, light absorption decreases the rate at which these scatterings change with aspect ratio. The shape of the aggregates also affects the scattering properties. The rABR constructed here scatters up to 4.4% (7.0%; 20.4%) and 34.2% (11.1%; 32.7%) more light in the lateral and backward directions, respectively, and 1.2% (1.3%; 2.4%) less in the forward direction in comparison with the component bullets (component bullet rosettes; equivalent projected area bullet rosette), resulting in up to 2.5% (1.6%; 3.8%) decrease in g at 0.55 μm. In addition, as the aspect ratio and number of attached bullets in ABRs increase, g increases by up to 1.8% and decreases by up to 2.0% at 0.55 μm, increases by 2.0% and decreases by 0.3% at 2.11 μm, and increases by 1.1% and decreases by 0.5% at 3.78 μm, respectively. As an implication for remote sensing studies, the difference in the bidirectional reflectance distribution function calculated using the rABR and a bullet rosette is shown to vary by up to 107% at moderately absorbing (2.11 μm) wavelengths and by up to 35% and 28% at nonabsorbing (0.55 μm) and strongly absorbing (3.78 μm) wavelengths.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference53 articles.

1. Role of small ice crystals in radiative properties of cirrus: A case study, FIRE II, November 22, 1991.;Arnott;J. Geophys. Res.,1994

2. In situ observation of cirrus scattering phase functions with 22° and 46° halos: Cloud field study on 19 February 1998.;Auriol;J. Atmos. Sci.,2001

3. Testing the coherence of cirrus microphysical and bulk properties retrieved from dual-viewing multispectral satellite radiance measurements.;Baran;J. Geophys. Res.,1999

4. A scattering phase function for ice cloud: Tests of applicability using aircraft and satellite multi-angle multi-wavelength radiance measurements of cirrus.;Baran;Quart. J. Roy. Meteor. Soc.,2001

5. On the scattering phase-function of non-symmetric ice-crystals.;Baran;Quart. J. Roy. Meteor. Soc.,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3