Direct Estimation of the Reynolds Stress Vertical Structure in the Nearshore

Author:

Feddersen Falk1,Williams A. J.2

Affiliation:

1. Scripps Institution of Oceanography, La Jolla, California

2. Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Abstract

Abstract Measurements of the vertical Reynolds stress components in the wave-dominated nearshore are required to diagnose momentum and turbulence dynamics. Removing wave bias from Reynolds stress estimates is critical to a successful diagnosis. Here two existing Reynolds stress estimation methods (those of Trowbridge, and Shaw and Trowbridge) for wave-dominated environments and an extended method (FW) that is a combination of the two are tested with a vertical array of three current meters deployed in 3.2-m water depth off an ocean beach. During the 175-h-long experiment the instruments were seaward of the surfzone and the alongshore current was wind driven. Intercomparison of Reynolds stress methods reveals that the Trowbridge method is wave bias dominated. Tests of the integrated cospectra are used to reject bad Reynolds stress estimates, and the Shaw and Trowbridge estimates are rejected more often than FW estimates. With the FW method, wave bias remains apparent in the cross-shore component of the Reynolds stress. However, the alongshore component of Reynolds stress measured at the three current meters are related to each other with a vertically uniform first EOF containing 73% of the variance, indicating the presence of a constant stress layer. This is the first time the vertical structure of Reynolds stress has been measured in a wave-dominated environment. The Reynolds stress is, albeit weakly, related to the wind stress and a parameterized bottom stress. Using derived wave bias and bottom stress parameterizations, the effect of wave bias on Reynolds stress estimates is shown to be weaker for more typical surfzone conditions (with both stronger waves and currents than those observed here).

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3