Numerical Forecasts of the 15–16 June 2002 Southern Plains Mesoscale Convective System: Impact of Mesoscale Data and Cloud Analysis

Author:

Dawson Daniel T.1,Xue Ming1

Affiliation:

1. School of Meteorology, and Center for Analysis and Prediction of Storms, University of Oklahoma, Norman, Oklahoma

Abstract

Abstract High-resolution explicit forecasts using the Advanced Regional Prediction System (ARPS) of the 15–16 June 2002 mesoscale convective system (MCS) that occurred over the U.S. central and southern plains during the International H2O Project (IHOP_2002) field experiment period are performed. The forecasts are designed to investigate the impact of mesoscale and convective-scale data on the initialization and prediction of an organized convective system. Specifically, the forecasts test the impact of special mesoscale surface and upper-air data collected by, but not necessarily specific to, IHOP_2002 and of level-II data from multiple Weather Surveillance Radar-1988 Doppler radars. The effectiveness of using 30-min assimilation cycles with the use of a complex cloud-analysis procedure and high-temporal-resolution surface data is also examined. The analyses and forecasts employ doubly nested grids, with resolutions of 9 and 3 km. Emphasis is placed on the solutions of the 3-km grid. In all forecasts, a strong, well-defined bow-shaped MCS is produced with structure and behavior similar to those of the observed system. Verification of these forecasts through both regular and phase-shifted equitable threat scores of the instantaneous composite reflectivity fields indicate that the use of the complex cloud analysis has the greatest positive impact on the prediction of the MCS, primarily by removing the otherwise needed “spinup” time of convection in the model. The impact of additional data networks is smaller and is reflected mainly in reducing the spinup time of the MCS too. The use of intermittent assimilation cycles appears to be quite beneficial when the assimilation window covers a time period when the MCS is present. Difficulties with verifying weather systems with high spatial and temporal intermittency are also discussed, and the use of both regular and spatially shifted equitable threat scores is found to be very beneficial in assessing the quality of the forecasts.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference34 articles.

1. Baldwin, M. E., S.Lakshmivarahan, and J. S.Kain, 2001: Verification of mesoscale features in NWP models. Preprints, Ninth Conf. on Mesoscale Processes, Fort Lauderdale, FL, Amer. Meteor. Soc., 255–257.

2. Baldwin, M. E., S.Lakshmivarahan, and J. S.Kain, 2002: Development of an “events-oriented” approach to forecast verification. Preprints, 15th Conf. on Numerical Weather Prediction, San Antonio, TX, Amer. Meteor. Soc., CD-ROM, 7B.3.

3. Statistical interpolation by means of successive corrections.;Bratseth;Tellus,1986

4. Brewster, K. , 1996: Application of a Bratseth analysis scheme including Doppler radar data. Preprints, 15th Conf. on Weather Analysis and Forecasting, Norfolk, VA, Amer. Meteor. Soc., 92–95.

5. Brewster, K. , 2002: Recent advances in the diabatic initialization of a non-hydrostatic numerical model. Preprints, 15th Conf. on Numerical Weather Prediction and 21st Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., CD-ROM, J6.3.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3