Model Forecast Improvements with Decreased Horizontal Grid Spacing over Finescale Intermountain Orography during the 2002 Olympic Winter Games

Author:

Hart Kenneth A.1,Steenburgh W. James1,Onton Daryl J.1

Affiliation:

1. NOAA Cooperative Institute for Regional Prediction, and Department of Meteorology, University of Utah, Salt Lake City, Utah

Abstract

Abstract Forecasts produced for the 2002 Olympic and Paralympic Winter Games (23 January–25 March 2002) by a multiply nested version of the fifth-generation Pennsylvania State University–National Center for Atmospheric Research (PSU–NCAR) Mesoscale Model (MM5) are examined to determine if decreasing horizontal grid spacing to 4 km improves forecast accuracy over the finescale topography of the Intermountain West. The verification is based on high-density observations collected by the MesoWest cooperative networks, including approximately 200 wind and temperature sites and 100 precipitation sites across northern Utah. Wind and precipitation forecasts produced by the 4-km MM5 domain were more accurate (based on traditional measures) than those of its parent 12-km domain. The most significant improvements in wind speed forecasts occurred at night in valleys and lowland locations where the topography of the 4-km domain produced more accurate nocturnal flows. Wind direction forecast improvements were most substantial at mountain sites where the better topographic resolution of the 4-km domain more accurately reflected the exposure of these locations to the free atmosphere. The 4-km domain also produced quantitative precipitation forecasts that were either equally (small events) or more (large events) accurate than the 12-km domain. Precipitation bias errors varied substantially between the two domains since the representation of the region’s narrow, steeply sloped, basin-and-range topography improved dramatically at 4-km grid spacing. Curiously, the overall accuracy of temperature forecasts by the 4-km domain was not significantly better than that of the 12-km domain. This was due to an inability of the MM5 to properly simulate nocturnal and persistent cold pools within mountain valleys and the lowlands upstream of the Wasatch Mountains. Paradoxically, the added resolution of the 4-km domain, coupled with the failure of this version of the MM5 to fully capture the nocturnal and persistent cold pools, resulted in poorer skill scores. At upper elevations, which are typically above the cold pools, the 4-km domain was substantially more accurate. These results illustrate that decreasing horizontal grid spacing to less than 10 km does improve wind and precipitation forecasts over finescale Intermountain West topography. It is hypothesized that model improvements will ultimately enable the advantages of added model resolution to be fully realized for temperature forecasts over the Intermountain West.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference43 articles.

1. Cheng, L. , 2001: Validation of quantitative precipitation forecasts during the Intermountain Precipitation Experiment. M.S. thesis, Dept. of Meteorology, University of Utah, 137 pp. [Available from Dept. of Meteorology, University of Utah, 135 South 1460 East, Salt Lake City, UT 84112.].

2. Cold-air-pool structure and evolution in a mountain basin: Peter Sinks, Utah.;Clements;J. Appl. Meteor.,2003

3. Evaluation of MM5 and Eta-10 precipitation forecasts over the Pacific Northwest during the cool season.;Colle;Wea. Forecasting,1999

4. MM5 precipitation verification over the Pacific Northwest during the 1997–99 cool seasons.;Colle;Wea. Forecasting,2000

5. Evaluation of the timing and strength of MM5 and Eta surface trough passages over the eastern Pacific.;Colle;Wea. Forecasting,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3