Affiliation:
1. National Center for Atmospheric Research,* Boulder, Colorado
2. Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania
Abstract
Abstract
In high-resolution numerical simulations (using horizontal grid spacing less than ∼1 km), the convective region of squall lines will sometimes overturn as quasi-horizontal convective rolls. The authors study one case in detail using output from a simulation with 125-m grid spacing. The rolls have an average spacing of 3 km and are aligned parallel to the vertical wind shear. Individual convective cells often have long-lived, undiluted cores that entrain primarily on the sides of the rolls (i.e., between the roll updraft and downdraft). The following set of conditions is proposed for obtaining roll overturning: the formation of a moist absolutely unstable layer (MAUL); vertical shear of the horizontal wind within the MAUL; an environment without large-amplitude perturbations; and quasi-horizontal flow over the squall line’s surface-based cold pool.
Further insight is gained through a series of more idealized simulations wherein a specified MAUL is perturbed by analytic potential temperature perturbations. These simulations confirm classical studies based on linear analysis because the smallest perturbations grow fastest (with the exception of the very smallest scales that are affected by diffusion). The results also confirm that, with shear, updrafts oriented across the shear vector are inhibited by the shear. An explanation for the ∼3-km roll spacing also emerges from these simulations. The argument focuses on the perturbations that exist in the cold pool underneath the MAUL; they induce pressure fields that extend upward into the overlying MAUL. The perturbations with large horizontal scale have pressure fields that extend farther vertically and with a greater amplitude, and thus are more effective at initiating motions in the overlying MAUL. The convective scale that ultimately emerges within the MAUL is somewhere between two scales, whereby comparatively large scales are perturbed more strongly by perturbations in the cold pool, but the comparatively small scales grow faster.
Publisher
American Meteorological Society
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献