Wind Forecasts for Rocket and Balloon Launches at the Esrange Space Center Using the WRF Model

Author:

Fonseca Ricardo1,Martín-Torres Javier2,Andersson Kent3

Affiliation:

1. Division of Space Technology, Department of Computer Science, Electrical and Space Engineering, Luleå University of Technology, Luleå, Sweden

2. Division of Space Technology, Department of Computer Science, Electrical and Space Engineering, Luleå University of Technology, Luleå, Sweden, and Instituto Andaluz de Ciencias de la Tierra (CSIC-UGR), Granada, Spain

3. Swedish Space Corporation, Esrange Space Center, Kiruna, Sweden

Abstract

Abstract High-altitude balloons and rockets are regularly launched at the Esrange Space Center (ESC) in Kiruna, Sweden, with the aim of retrieving atmospheric data for meteorological and space studies in the Arctic region. Meteorological conditions, particularly wind direction and speed, play a critical role in the decision of whether to go ahead with or postpone a planned launch. Given the lack of high-resolution wind forecasts for this remote region, the Weather Research and Forecasting (WRF) Model is used to downscale short-term forecasts given by the Global Forecast System (GFS) for the ESC for six 5-day periods in the warm, cold, and transition seasons. Three planetary boundary layer (PBL) schemes are considered: the local Mellor–Yamada–Janjić (MYJ), the nonlocal Yonsei University (YSU), and the hybrid local–nonlocal Asymmetric Convective Model 2 (ACM2). The ACM2 scheme is found to provide the most skillful forecasts. An analysis of the WRF Model output against the launch criteria for two of the most commonly launched vehicles, the sounding rockets Veículo de Sondagem Booster-30 (VSB-30) and Improved Orion, reveals probability of detection (POD) values that always exceeds 60% with the false alarm rate (FAR) generally below 50%. It is concluded that the WRF Model, in its present configuration, can be used to generate useful 5-day wind forecasts for the launches of these two rockets. The conclusions reached here are applicable to similar sites in the Arctic and Antarctic regions.

Funder

Swedish National Space Board

Luleå Tekniska Universitet

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3