Affiliation:
1. University of Hawai‘i at Mānoa, Honolulu, Hawaii
Abstract
Abstract
A new method for modeling the lowest model level vertical motion is described and validated. Instead of smoothing terrain heights, the new method calculates the terrain gradient on a high-resolution grid and averages the gradient values around a gridpoint location. In essence, the method provides a way to achieve some of the impact of very steep terrain on the flow without the computational overhead associated with the very high grid resolution needed to fully resolve complex terrain. The more accurate depiction of the terrain gradient leads to an increase in orographic vertical motion and causes rainfall to occur more often over the windward-facing mountain slopes, consistent with observations. Model results are compared with rain gauge data during the month of January 2016 as well as radar data from a case study on 9 March 2012. When implemented in the Weather Research and Forecasting (WRF) Model over the island of Oahu and compared with the current WRF method, the model precipitation forecast skill is improved. The new method produces more precipitation over the island during January 2016, which is closer to the observed value. On 9 March 2012, the new method clearly focuses the precipitation over the Ko‘olau Mountains, reducing the number of false alarm forecasts by nearly one-half. Although the changes to model precipitation skill were small, they were generally positive.
Funder
U.S. Department of Energy
National Science Foundation
Publisher
American Meteorological Society
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献