C-band Dual-Polarization Radar Signatures of Wet Downbursts around Cape Canaveral, Florida

Author:

Amiot Corey G.1,Carey Lawrence D.1,Roeder William P.2,McNamara Todd M.2,Blakeslee Richard J.3

Affiliation:

1. Department of Atmospheric Science, The University of Alabama in Huntsville, Huntsville, Alabama

2. 45th Weather Squadron, Patrick Air Force Base, Florida

3. NASA Marshall Space Flight Center, Huntsville, Alabama

Abstract

Abstract Wind warnings are the second-most-frequent advisory issued by the U.S. Air Force’s 45th Weather Squadron (45WS) at Cape Canaveral, Florida. Given the challenges associated with nowcasting convection in Florida during the warm season, improvements in 45WS warnings for convective wind events are desired. This study aims to explore the physical bases of dual-polarization radar signatures within wet downbursts around Cape Canaveral and identify signatures that may assist the 45WS during real-time convective wind nowcasting. Data from the 45WS’s C-band dual-polarization radar were subjectively analyzed within an environmental context, with quantitative wind measurements recorded by weather tower sensors for 32 threshold-level downbursts with near-surface winds ≥ 35 kt (1 kt ≈ 0.51 m s−1) and 32 null downbursts. Five radar signatures were identified in threshold-level downburst-producing storms: peak height of 1-dB differential reflectivity ZDR column, peak height of precipitation ice signature, peak reflectivity, height below 0°C level where ZDR increases to 3 dB within a descending reflectivity core (DRC), and vertical ZDR gradient within DRC. Examining these signatures directly in updraft–downdraft cycles that produced threshold-level winds yielded mean lead times of 20.0–28.2 min for cumulus and mature stage signatures and 12.8–14.9 min for dissipating stage signatures, with higher signature test values generally yielding higher skill scores. A conceptual test of utilizing signatures within earlier cells in multicell storms to indirectly predict the potential for intense downbursts in later cells was performed, which offered increased lead times and skill scores for an Eulerian forecast region downstream from the storm initiation location.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference68 articles.

1. Amiot, C. G. , 2017: Using C-band dual-polarization radar and environmental signatures to improve convective wind nowcasting at Cape Canaveral Air Force Station and NASA Kennedy Space Center. M.S. thesis, Dept. of Atmospheric Science, The University of Alabama in Huntsville, 158 pp.

2. Physical origin of a wet microburst: Observations and theory;Atlas;J. Atmos. Sci.,2004

3. Use of polarization to characterize precipitation and discriminate large hail;Balakrishnan;J. Atmos. Sci.,1990

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3