Global Assessment of the Capability of Satellite Precipitation Products to Retrieve Landslide-Triggering Extreme Rainfall Events

Author:

Marc Odin1,Oliveira Romulo A. Jucá2,Gosset Marielle1,Emberson Robert345,Malet Jean-Philippe6

Affiliation:

1. a Géosciences Environnement Toulouse, CNRS/IRD/CNES/UPS, Observatoire Midi-Pyrénées, Toulouse, France

2. b Laboratoire d’Etudes en Géophysique et Océanographie Spatiales, Université de Toulouse III/CNRS/CNES/IRD, Observatoire Midi-Pyrénées, Toulouse, France

3. c Hydrological Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland

4. d Universities Space Research Association, Columbia, Maryland

5. e NASA Goddard Earth Sciences Technology and Research, Columbia, Maryland

6. f Institut Terre et Environnement de Strasbourg, CNRS/UMR7063, EOST/Université de Strasbourg, Strasbourg, France

Abstract

Abstract Rainfall-induced landsliding is a global and systemic hazard that is likely to increase with the projections of increased frequency of extreme precipitation with current climate change. However, our ability to understand and mitigate landslide risk is strongly limited by the availability of relevant rainfall measurements in many landslide prone areas. In the last decade, global satellite multisensor precipitation products (SMPP) have been proposed as a solution, but very few studies have assessed their ability to adequately characterize rainfall events triggering landsliding. Here, we address this issue by testing the rainfall pattern retrieved by two SMPPs (IMERG and GSMaP) and one hybrid product [Multi-Source Weighted-Ensemble Precipitation (MSWEP)] against a large, global database of 20 comprehensive landslide inventories associated with well-identified storm events. We found that, after converting total rainfall amounts to an anomaly relative to the 10-yr return rainfall R*, the three products do retrieve the largest anomaly (of the last 20 years) during the major landslide event for many cases. However, the degree of spatial collocation of R* and landsliding varies from case to case and across products, and we often retrieved R* > 1 in years without reported landsliding. In addition, the few (four) landslide events caused by short and localized storms are most often undetected. We also show that, in at least five cases, the SMPP’s spatial pattern of rainfall anomaly matches landsliding less well than does ground-based radar rainfall pattern or lightning maps, underlining the limited accuracy of the SMPPs. We conclude on some potential avenues to improve SMPPs’ retrieval and their relation to landsliding. Significance Statement Rainfall-induced landsliding is a global hazard that is expected to increase as a result of anthropogenic climate change. Our ability to understand and mitigate this hazard is strongly limited by the lack of rainfall measurements in mountainous areas. Here, we perform the first global assessment of the potential of three high-resolution precipitation datasets, derived from satellite observations, to capture the rainfall characteristics of 20 storms that led to widespread landsliding. We find that, accounting for past extreme rainfall statistics (i.e., the rainfall returning every 10 years), most storms causing landslides are retrieved by the datasets. However, the shortest storms (i.e., ∼3 h) are often undetected, and the detailed spatial pattern of extreme rainfall often appears to be distorted. Our work opens new ways to study global landslide hazard but also warns against overinterpreting rainfall derived from satellites.

Publisher

American Meteorological Society

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3