Copula-Derived Observation Operators for Assimilating TMI and AMSR-E Retrieved Soil Moisture into Land Surface Models

Author:

Gao Huilin1,Wood Eric F.2,Drusch Matthias3,McCabe Matthew F.4

Affiliation:

1. Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey, and School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia

2. Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey

3. European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom

4. Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey, and Los Alamos National Laboratory, Los Alamos, New Mexico

Abstract

Abstract Assimilating soil moisture from satellite remote sensing into land surface models (LSMs) has potential for improving model predictions by providing real-time information at large scales. However, the majority of the research demonstrating this potential has been limited to datasets based on either airborne data or synthetic observations. The limited availability of satellite-retrieved soil moisture and the observed qualitative difference between satellite-retrieved and modeled soil moisture has posed challenges in demonstrating the potential over large regions in actual applications. Comparing modeled and satellite-retrieved soil moisture fields shows systematic differences between their mean values and between their dynamic ranges, and these systematic differences vary with satellite sensors, retrieval algorithms, and LSMs. This investigation focuses on generating observation operators for assimilating soil moisture into LSMs using a number of satellite–model combinations. The remotely sensed soil moisture products come from the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) and the NASA/Earth Observing System (EOS) Advanced Microwave Scanning Radiometer (AMSR-E). The soil moisture model predictions are from the Variable Infiltration Capacity (VIC) hydrological model; the 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40); and the NCEP North American Regional Reanalysis (NARR). For this analysis, the satellite and model data are over the southern Great Plains region from 1998 to 2003 (1998–2002 for ERA-40). Previous work on observation operators used the matching of cumulative distributions to transform satellite-retrieved soil moisture into modeled soil moisture, which implied perfect correlations between the ranked values. In this paper, a bivariate statistical approach, based on copula distributions, is employed for representing the joint distribution between retrieved and modeled soil moisture, allowing for a quantitative estimation of the uncertainty in modeled soil moisture when merged with a satellite retrieval. The conditional probability distribution of model-based soil moisture conditioned on a satellite retrieval forms the basis for the soil moisture observation operator. The variance of these conditional distributions for different retrieval algorithms, LSMs, and locations provides an indication of the information content of satellite retrievals in assimilation. Results show that the operators vary by season and by land surface model, with the satellite retrievals providing more information in summer [July–August (JJA)] and fall [September–November (SON)] than winter [December–February (DJF)] or spring [March–May (MAM)] seasons. Also, the results indicate that the value of satellite-retrieved soil moisture is most useful to VIC, followed by ERA-40 and then NARR.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3