The 13–14 December 2001 IMPROVE-2 Event. Part II: Comparisons of MM5 Model Simulations of Clouds and Precipitation with Observations

Author:

Garvert Matthew F.1,Woods Christopher P.1,Colle Brian A.2,Mass Clifford F.1,Hobbs Peter V.1,Stoelinga Mark T.1,Wolfe Justin B.2

Affiliation:

1. Department of Atmospheric Sciences, University of Washington, Seattle, Washington

2. Institute for Terrestrial and Planetary Atmospheres, State University of New York at Stony Brook, Stony Brook, New York

Abstract

Abstract This paper compares airborne in situ observations of cloud microphysical parameters with the fifth-generation Pennsylvania State University–National Center for Atmospheric Research (PSU–NCAR) Mesoscale Model (MM5) simulations, using the Reisner-2 bulk microphysical parameterization, for a heavy precipitation event over the Oregon Cascades on 13–14 December 2001. The MM5 correctly replicated the extent of the snow field and the growth of snow particles by vapor deposition measured along aircraft flight tracks between altitudes of 4.9 and 6 km, but overpredicted the mass concentrations of snow. The model produced a broader number distribution of snow particles than observed, overpredicting the number of moderate-to-large-sized snow particles and underpredicting the number of small particles observed along the aircraft flight track. Over the mountain crest, the model overpredicted depositional growth of snow and mass concentrations of snow, but underpredicted the amount of cloud liquid water and conversion of snow to graupel. The misclassification of graupel as snow and excessive amounts of snow resulted in the model overpredicting precipitation on the lee slopes and in localized areas along the foothills of the Cascades. The model overpredicted cloud liquid water over the lower windward slopes and foothills, where accretion of cloud liquid water by rain was the primary precipitation-producing mechanism.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3