Using Bayesian Model Averaging to Calibrate Forecast Ensembles

Author:

Raftery Adrian E.1,Gneiting Tilmann1,Balabdaoui Fadoua1,Polakowski Michael1

Affiliation:

1. Department of Statistics, University of Washington, Seattle, Washington

Abstract

Abstract Ensembles used for probabilistic weather forecasting often exhibit a spread-error correlation, but they tend to be underdispersive. This paper proposes a statistical method for postprocessing ensembles based on Bayesian model averaging (BMA), which is a standard method for combining predictive distributions from different sources. The BMA predictive probability density function (PDF) of any quantity of interest is a weighted average of PDFs centered on the individual bias-corrected forecasts, where the weights are equal to posterior probabilities of the models generating the forecasts and reflect the models' relative contributions to predictive skill over the training period. The BMA weights can be used to assess the usefulness of ensemble members, and this can be used as a basis for selecting ensemble members; this can be useful given the cost of running large ensembles. The BMA PDF can be represented as an unweighted ensemble of any desired size, by simulating from the BMA predictive distribution. The BMA predictive variance can be decomposed into two components, one corresponding to the between-forecast variability, and the second to the within-forecast variability. Predictive PDFs or intervals based solely on the ensemble spread incorporate the first component but not the second. Thus BMA provides a theoretical explanation of the tendency of ensembles to exhibit a spread-error correlation but yet be underdispersive. The method was applied to 48-h forecasts of surface temperature in the Pacific Northwest in January–June 2000 using the University of Washington fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5) ensemble. The predictive PDFs were much better calibrated than the raw ensemble, and the BMA forecasts were sharp in that 90% BMA prediction intervals were 66% shorter on average than those produced by sample climatology. As a by-product, BMA yields a deterministic point forecast, and this had root-mean-square errors 7% lower than the best of the ensemble members and 8% lower than the ensemble mean. Similar results were obtained for forecasts of sea level pressure. Simulation experiments show that BMA performs reasonably well when the underlying ensemble is calibrated, or even overdispersed.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 1426 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3