Subtropical Cyclogenesis over the Central North Pacific*

Author:

Caruso Steven J.1,Businger Steven1

Affiliation:

1. Department of Meteorology, University of Hawaii at Manoa, Honolulu, Hawaii

Abstract

Abstract The occurrence of subtropical cyclones over the central North Pacific Ocean has a significant impact on Hawaii’s weather and climate. In this study, 70 upper-level lows that formed during the period 1980–2002 are documented. In each case the low became cut off from the polar westerlies south of 30°N over the central Pacific, during the Hawaiian cool season (October–April). The objectives of this research are to document the interannual variability in the occurrence of upper-level lows, to chart the locations of their genesis and their tracks, and to investigate the physical mechanisms important in associated surface development. Significant interannual variability in the occurrence of upper-level lows was found, with evidence suggesting the influence of strong El Niño–Southern Oscillation events on the frequency of subtropical cyclogenesis in this region. Of the 70 upper-level lows, 43 were accompanied by surface cyclogenesis and classified as kona lows. Kona low formation is concentrated to the west-northwest of Hawaii, especially during October and November, whereas lows without surface development are concentrated in the area to the east-northeast of Hawaii. Kona low genesis shifts eastward through the cool season, favoring the area to the east-northeast of Hawaii during February and March, consistent with a shift in the climatological position of the trough aloft during the cool season. Consistent with earlier studies, surface deepening is well correlated with positive vorticity advection by the thermal wind. Static stability and advection of low-level moisture are less well correlated to surface deepening. These results suggest that kona low formation, to first order, is a baroclinic instability that originates in the midlatitudes, and that convection and latent-heat release play a secondary role in surface cyclogenesis.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3