Affiliation:
1. Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, New York
2. Institute of Oceanography, University of Hamburg, Hamburg, Germany
Abstract
Abstract
The sensitivities of the Brewer–Dobson circulation (BDC) to different distributions of tropical SST heating are investigated in an idealized aquaplanet model. It is found that an increase in tropical SSTs generally leads to an acceleration of tropical upwelling and an associated reduction in the age of air (AOA) in the polar stratosphere and that the AOA near the subtropical tropopause is correlated with local isentropic mixing of tropospheric air with stratospheric air.
The zonal distribution of SST perturbations has a major impact on the vertical and meridional structure of the BDC as compared with other SST characteristics. Zonally localized SST heatings tend to generate a shallow acceleration of the stratospheric residual circulation, enhanced isentropic mixing associated with a weakened stratospheric jet, and a reduction in AOA mostly within the polar vortex. In contrast, SST heatings with a zonally symmetric structure tend to produce a deep strengthening of the stratospheric residual circulation, suppressed isentropic mixing associated with a stronger stratospheric jet, and a decrease of AOA in the entire stratosphere. The shallow versus deep strengthening of the stratospheric residual circulation change has been linked to wave propagation and dissipation in the subtropical lower stratosphere rather than wave generation in the troposphere, and the former can be strongly affected by the vertical position of the subtropical jet. These results suggest that, while the longitudinally localized SST trends under climate change may contribute to the change in the shallow branch of the BDC, the upward shift of the subtropical jet associated with the zonal SST heating can impact the deep branch of the BDC.
Publisher
American Meteorological Society
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献