A Compact Model for the Stability Dependency of TKE Production–Destruction–Conversion Terms Valid for the Whole Range of Richardson Numbers

Author:

Ďurán Ivan Bašták1,Geleyn Jean-François1,Váňa Filip1

Affiliation:

1. ONPP/CHMI, Prague, Czech Republic

Abstract

Abstract Recently, observational and numerical evidence has accumulated against the concept of a critical Richardson number Ricr beyond which too-stable stratification would extinguish turbulence. It also appeared that the characteristics of the “weak turbulent regime” where the Prandtl number σt increases proportionally to the Richardson number Ri can be explained via the conservation of total turbulent energy in a strongly anisotropic flow. Having a “No Ri(cr)” situation together with due consideration of the anisotropy thus leads to the correct asymptotic behavior at high stabilities in several recent proposals [revisit of the Mellor–Yamada basic system, non-Reynolds-type quasi-normal scale elimination (QNSE) theory, and energy and flux budget (EFB) theory leading to a fully self-consistent hierarchy of increasingly prognostic schemes]. The present work derives a simple unique analytical framework for these various alternatives, simplifying, in two complementary but surprisingly converging ways, the revisited Mellor–Yamada formulation and emulating with high accuracy the relevant solutions within QNSE and EFB. The simplification or emulation steps differ from one case to the next, but the obtained common framework is very compact, valid for Ri going from −∞ to +∞, depending only on four free parameters and on three “functional dependencies.” Each functional dependency corresponds either to a constant value or to a regular function of the flux Richardson number Rif depending on the complexity of the considered hypotheses. Four realizations of this codification are representative of all related possibilities, the analytical scheme thus possessing high transversal validity. Extension toward higher-order solutions and/or moist turbulence can be envisaged in such a unified framework.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference41 articles.

1. Nocturnal low-level jet characteristics over Kansas during CASES-99;Banta;Bound.-Layer Meteor.,2002

2. Bašták, I. , 2009: Parametrizácia fyzikálnych procesov v numerickom predpovednom modeli a ich príspevok k predpovedi vybraných meteorologickch prvkov (Rozšírenie turbulentnej schémy pseudo-TKE). Ph.D. thesis, Comenius University in Bratislava, 98 pp.

3. Parameterization of orography-induced turbulence in a mesobeta-scale model;Bougeault;Mon. Wea. Rev.,1989

4. Large eddy simulation of turbulence: A subgrid model including shear, vorticity, rotation, and buoyancy;Canuto;Astrophys. J.,1994

5. Non-local ocean mixing model and a new plume model for deep convection;Canuto;Ocean Modell.,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3