Affiliation:
1. Centre for the Analysis of Time Series, London School of Economics and Political Science, London, United Kingdom
Abstract
Abstract
Data assimilation and state estimation for nonlinear models is a challenging task mathematically. Performing this task in real time, as in operational weather forecasting, is even more challenging as the models are imperfect: the mathematical system that generated the observations (if such a thing exists) is not a member of the available model class (i.e., the set of mathematical structures admitted as potential models). To the extent that traditional approaches address structural model error at all, most fail to produce consistent treatments. This results in questionable estimates both of the model state and of its uncertainty. A promising alternative approach is proposed to produce more consistent estimates of the model state and to estimate the (state dependent) model error simultaneously. This alternative consists of pseudo-orbit data assimilation with a stopping criterion. It is argued to be more efficient and more coherent than one alternative variational approach [a version of weak-constraint four-dimensional variational data assimilation (4DVAR)]. Results that demonstrate the pseudo-orbit data assimilation approach can also outperform an ensemble Kalman filter approach are presented. Both comparisons are made in the context of the 18-dimensional Lorenz96 flow and the two-dimensional Ikeda map. Many challenges remain outside the perfect model scenario, both in defining the goals of data assimilation and in achieving high-quality state estimation. The pseudo-orbit data assimilation approach provides a new tool for approaching this open problem.
Publisher
American Meteorological Society
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Three-step-ahead prediction for object tracking;Image and Vision Computing;2018-07
2. Chaotic particle filter for visual object tracking;Journal of Visual Communication and Image Representation;2018-05
3. Multi-step prediction method for robust object tracking;Digital Signal Processing;2017-11
4. Multi-model cross-pollination in time;Physica D: Nonlinear Phenomena;2017-09
5. Rising Above Chaotic Likelihoods;SIAM/ASA Journal on Uncertainty Quantification;2017-01