Gravity Wave–Fine Structure Interactions. Part II: Energy Dissipation Evolutions, Statistics, and Implications

Author:

Fritts David C.1,Wang Ling1

Affiliation:

1. GATS Inc., Boulder, Colorado

Abstract

Abstract Part I of this paper employs four direct numerical simulations (DNSs) to examine the dynamics and energetics of idealized gravity wave–fine structure (GW–FS) interactions. That study and this companion paper were motivated by the ubiquity of multiscale GW–FS superpositions throughout the atmosphere. These DNSs exhibit combinations of wave–wave interactions and local instabilities that depart significantly from those accompanying idealized GWs or mean flows alone, surprising dependence of the flow evolution on the details of the FS, and an interesting additional pathway to instability and turbulence due to GW–FS superpositions. This paper examines the mechanical and thermal energy dissipation rates occurring in two of these DNSs. Findings include 1) dissipation that tends to be much more localized and variable than that due to GW instability in the absence of FS, 2) dissipation statistics indicative of multiple turbulence sources, 3) strong influences of FS shears on instability occurrence and turbulence intensities and statistics, and 4) significant differences between mechanical and thermal dissipation rate fields having potentially important implications for measurements of these flows.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3