Observations of Temperature, Wind, Cirrus, and Trace Gases in the Tropical Tropopause Transition Layer during the MJO*

Author:

Virts Katrina S.1,Wallace John M.1

Affiliation:

1. Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Abstract

Abstract Satellite observations of temperature, optically thin cirrus clouds, and trace gases derived from the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC), Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), and the Microwave Limb Sounder (MLS) are analyzed in combination with Interim European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-Interim) wind and humidity fields in the tropical tropopause transition layer (TTL), using the Madden–Julian oscillation (MJO) as a carrier signal. MJO-related deep convection induces planetary-scale Kelvin and Rossby waves in the stably stratified TTL. Regions of ascent in these waves are associated with anomalously low temperatures, high radiative heating rates, enhanced cirrus occurrence, and high carbon monoxide and low ozone concentrations. Low water vapor mixing ratio anomalies lag the low temperature anomalies by about 1–2 weeks. The anomalies in all fields propagate eastward, circumnavigating the tropical belt over a roughly 40-day interval. Equatorial cross sections reveal that the anomalies tilt eastward with height in the TTL and propagate downward from the lower stratosphere into the upper troposphere. As MJO-related convection moves into the western Pacific and dissipates, a fast-moving Kelvin wave flanked by Rossby waves propagates eastward across South America and Africa into the western Indian Ocean. The region of equatorial westerly wind anomalies behind the Kelvin wave front lengthens until it encompasses most of the tropics at the 150-hPa level, giving rise to equatorially symmetric, anomalously low zonal-mean temperature and water vapor mixing ratio and enhanced cirrus above about 100 hPa.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3