Inherently Conservative Nonpolynomial-Based Remapping Schemes: Application to Semi-Lagrangian Transport

Author:

Norman Matthew R.1,Nair Ramachandran D.2

Affiliation:

1. Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, North Carolina

2. Institute for Mathematics Applied to Geosciences, National Center for Atmospheric Research,* Boulder, Colorado

Abstract

Abstract A group of new conservative remapping schemes based on nonpolynomial approximations is proposed. The remapping schemes rely on the conservative cascade scheme (CCS), which employs an efficient sequence of 1D remapping operations to solve a multidimensional problem. The present study adapts three new nonpolynomial-based reconstructions of subgrid variation to the CCS: the Piecewise Hyperbolic Method (PHM), the Piecewise Double Hyperbolic Method (PDHM), and the Piecewise Rational Method (PRM) for comparison with the baseline method: the Piecewise Parabolic Method (PPM). Additionally, an adaptive hybrid approximation scheme, PPM-Hybrid (PPM-H), is constructed using monotonic PPM for smooth data and local extrema and using PHM for steep jumps where PPM typically suffers large accuracy degradation because of its original monotonic filter. Smooth and nonsmooth data profiles are transported in 1D, 2D Cartesian, and 2D spherical frameworks under uniform advection, solid-body rotation, and deformational flow. Accuracy is compared via the L1 global error norm. In general, PPM outperformed PHM, but when the majority of the error came from PPM degradation at sharp derivative changes (e.g., the vicinity near sine wave extrema), PHM was more accurate. PRM performed very similarly to PPM for nonsmooth functions, but the order of convergence was worse than PPM for smoother data. PDHM performed the worst of all of the nonpolynomial methods for nearly every test case. PPM-H outperformed PPM and all of the nonpolynomial methods for all test cases in all geometries, offering a robust advantage in the CCS scheme with a negligible increase in computational time.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference30 articles.

1. Conservative logarithmic reconstructions and finite volume methods.;Artebrant;SIAM J. Sci. Comput.,2005

2. Limiter-free third order logarithmic reconstruction.;Artebrant;SIAM J. Sci. Comput.,2006

3. Application of the piecewise parabolic method (PPM) to meteorological modeling.;Carpenter;Mon. Wea. Rev.,1990

4. The piecewise parabolic method (PPM) for gas-dynamical simulations.;Colella;J. Comput. Phys.,1984

5. Gates, W. L., E. S.Battern, A. B.Kahle, and A. B.Nelson, 1971: A documentation of the Mintz-Arakawa two-level atmospheric general circulation model. Tech. Rep. R-877-ARPA, Rand, Santa Monica, CA, 408 pp.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3