Discrete Frontal Propagation over the Sierra–Cascade Mountains and Intermountain West

Author:

Steenburgh W. James1,Neuman Colby R.1,West Gregory L.1,Bosart Lance F.2

Affiliation:

1. Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah

2. Department of Earth and Atmospheric Sciences, University at Albany, State University of New York, Albany, New York

Abstract

Abstract On 25 March 2006, a complex frontal system moved across the Sierra–Cascade Mountains and intensified rapidly over the Intermountain West where it produced one of the strongest cold-frontal passages observed in Salt Lake City, Utah, during the past 25 yr. Observational analyses and numerical simulations by the Weather Research and Forecast (WRF) Model illustrate that the frontal system propagated discretely across the Sierra–Cascade Mountains and western Nevada. This discrete propagation occurs in a synoptic environment that features a mobile upper-level cyclonic potential vorticity (PV) anomaly that is coupled initially with a landfalling Pacific cyclone and attendant occluded front. The eastward migration of the upper-level cyclonic PV anomaly ultimately encourages the development of a new surface-based cold front ahead of the landfalling occlusion as troughing, confluence, and convergence downstream of the Sierra Nevada intensify preexisting baroclinity over Nevada. Trajectories show that the new cold front represents a boundary between potentially warm air originating over the desert Southwest, some of which has been deflected around the south end of the high sierra, and potentially cool air that has traversed the sierra near and north of Lake Tahoe, some of which has been deflected around the north end of the high sierra. Although diabatic processes contribute to the frontal sharpening, they are not needed for the discrete propagation or rapid cold-frontal development. Forecasters should be vigilant for discrete frontal propagation in similar synoptic situations and recognize that moist convection or differential surface heating can contribute to but are not necessary for rapid Intermountain West frontogenesis.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference59 articles.

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3