The Role of Climatic Autocorrelation in Probabilistic Forecasting

Author:

Krzysztofowicz Roman1,Evans W. Britt1

Affiliation:

1. University of Virginia, Charlottesville, Virginia

Abstract

Abstract A sequence of meteorological predictands of one kind (e.g., temperature) forms a discrete-time, continuous-state stochastic process, which typically is nonstationary and periodic (because of seasonality). Three contributions to the field of probabilistic forecasting of such processes are reported. First, a meta-Gaussian Markov model of the stochastic process is formulated, which provides a climatic probabilistic forecast with the lead time of l days in the form of a (prior) l-step transition distribution function. A measure of the temporal dependence of the process is the autocorrelation coefficient (which is nonstationary). Second, a Bayesian processor of forecast (BPF) is formulated, which fuses the climatic probabilistic forecast with an operational deterministic forecast produced by any system (e.g., a numerical weather prediction model, a human forecaster, a statistical postprocessor). A measure of the predictive performance of the system is the informativeness score (which may be nonstationary). The BPF outputs a probabilistic forecast in the form of a (posterior) l-step transition distribution function, which quantifies the uncertainty about the predictand that remains, given the antecedent observation and the deterministic forecast. The working of the Markov BPF is explained on probabilistic forecasts obtained from the official deterministic forecasts of the daily maximum temperature issued by the U.S. National Weather Service with the lead times of 1, 4, and 7 days. Third, a numerical experiment demonstrates how the degree of posterior uncertainty varies with the informativeness of the deterministic forecast and the autocorrelation of the predictand series. It is concluded that, depending upon the level of informativeness, the Markov BPF is a contender for operational implementation when a rank autocorrelation coefficient is between 0.3 and 0.6, and is the preferred processor when a rank autocorrelation coefficient exceeds 0.6. Thus, the climatic autocorrelation can play a significant role in quantifying, and ultimately in reducing, the meteorological forecast uncertainty.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference16 articles.

1. Time series models to simulate and forecast wind speed and wind power.;Brown;J. Climate Appl. Meteor.,1984

2. Weather forecasting for weather derivatives.;Campbell;J. Amer. Stat. Assoc.,2005

3. Calibrated probabilistic forecasting at the stateline wind energy center: The regime-switching space-time method.;Gneiting;J. Amer. Stat. Assoc.,2006

4. Bayesian revision of an arbitrary prior density.;Kelly,1995

5. A bivariate meta-Gaussian density for use in hydrology.;Kelly;Stochastic Hydrol. Hydraul.,1997

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3