Well-Posed Lateral Boundary Conditions for Spectral Semi-Implicit Semi-Lagrangian Schemes: Tests in a One-Dimensional Model

Author:

Voitus F.1,Termonia P.2,Bénard P.1

Affiliation:

1. Centre National de Recherches Météorologiques, Météo-France, Toulouse, France

2. Royal Meteorological Institute, Brussels, Belgium

Abstract

Abstract The aim of this paper is to investigate the feasibility of well-posed lateral boundary conditions in a Fourier spectral semi-implicit semi-Lagrangian one-dimensional model. Two aspects are analyzed: (i) the complication of designing well-posed boundary conditions for a spectral semi-implicit scheme and (ii) the implications of such a lateral boundary treatment for the semi-Lagrangian trajectory computations at the lateral boundaries. Straightforwardly imposing boundary conditions in the gridpoint-explicit part of the semi-implicit time-marching scheme leads to numerical instabilities for time steps that are relevant in today’s numerical weather prediction applications. It is shown that an iterative scheme is capable of curing these instabilities. This new iterative boundary treatment has been tested in the framework of the one-dimensional shallow-water equations leading to a significant improvement in terms of stability. As far as the semi-Lagrangian part of the time scheme is concerned, the use of a trajectory truncation scheme has been found to be stable in experimental tests, even for large values of the advective Courant number. It is also demonstrated that a well-posed buffer zone can be successfully applied in this spectral context. A promising (but not easily implemented) alternative to these three above-referenced schemes has been tested and is also presented here.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Nonzero forcings;Semi-Lagrangian Advection Methods and Their Applications in Geoscience;2020

2. Introduction;Semi-Lagrangian Advection Methods and Their Applications in Geoscience;2020

3. Bibliography;Semi-Lagrangian Advection Methods and Their Applications in Geoscience;2020

4. Application of Boyd’s Periodization and Relaxation Method in a Spectral Atmospheric Limited-Area Model. Part II: Accuracy Analysis and Detailed Study of the Operational Impact;Monthly Weather Review;2012-10-01

5. Application of Boyd’s Periodization and Relaxation Method in a Spectral Atmospheric Limited-Area Model. Part I: Implementation and Reproducibility Tests;Monthly Weather Review;2012-10-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3