Trends and projection of heavy snowfall in Hokkaido, Japan as an application of self-organizing map

Author:

Inatsu Masaru1,Kawazoe Sho2,Mori Masato3

Affiliation:

1. Faculty of Science and Research Center for Integrative Natural Hazard, Mitigation, Hokkaido University, Sapporo, Japan (inaz@sci.hokudai.ac.jp)

2. Faculty of Science, Hokkaido University, Sapporo, Japan** (kawazoe@sci.hokudai.ac.jp)

3. Research Institute for Applied Mechanics, Kyushu University, Kasuga, Fukuoka, Japan (masato@riam.kyushu-u.ac.jp)

Abstract

AbstractThis paper showed the frequency of local-scale heavy winter snowfall in Hokkaido, Japan, its historical change, and its response to global warming using self-organizing map (SOM) of synoptic-scale sea-level pressure anomaly. Heavy snowfall days were here defined as days when the snowfall exceeded 10 mm in water equivalent. It was shown that the SOMs can be grouped into three categories for heavy snowfall days: 1) a passage of extratropical cyclones to the south of Hokkaido, 2) a pressure pattern between the Siberian high and the Aleutian low, and 3) a low-pressure anomaly just to the east of Hokkaido. Groups 1 and 2 were associated with heavy snowfall in Hiroo (located in southeastern Hokkaido) and in Iwamizawa (western Hokkaido), respectively, and heavy snowfall in Sapporo (western Hokkaido) was related to Group 3. The large-ensemble historical simulation reproduced the observed increasing trend in Group 2 and future projection revealed that Group 2 was related to a negative phase of the Western Pacific pattern and the frequency of this group would increase in the future. Heavy snowfall days associated with SOM Group 2 would also increase due to the increase in water vapor and preferable weather patterns in global warming climate, in contrast to the decrease of heavy snowfall days in other sites associated with SOM Group 1.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3