Radar Analysis of Precipitation Initiation in Maritime versus Continental Clouds near the Florida Coast: Inferences Concerning the Role of CCN and Giant Nuclei

Author:

Göke Sabine1,Ochs Harry T.1,Rauber Robert M.1

Affiliation:

1. Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois

Abstract

Abstract A method of analyzing radar data is developed and applied to determine whether the X-band radar reflectivity evolution of clouds observed during summertime on the northeast Florida coast during the Small Cumulus Microphysics Study (SCMS) shows distinct differences in precipitation development that can be associated with the clouds’ maritime or continental characteristics. For this study, the entire National Center for Atmospheric Research CP2 radar dataset from SCMS was examined, and 38 clouds were used. For these clouds the evolution in X-band radar reflectivity, from the clouds’ earliest detection through precipitation, was clearly documented and met specific requirements concerning the clouds’ location relative to the coastline and direction of movement. Since cloud condensation nuclei (CCN) and giant and ultragiant nuclei (GN) measurements were not available for the specific clouds used in this study, proxies were used to partition the clouds into four groups based on the cloud location and direction of movement. Specifically, it was assumed that clouds forming over the ocean during onshore flow had maritime characteristics (group 1: low CCN, high GN), clouds forming over land during onshore flow would have modified maritime characteristics (group 2: high CCN, high GN), clouds forming over land during offshore flow would have continental characteristics (group 3: high CCN, low GN), and clouds forming over the ocean during offshore flow would have modified continental characteristics (group 4: high CCN, high GN). These assumptions are based on past measurements presented by Sax and Hudson. Then, these populations were statistically compared using the nonparametric multiresponse permutation procedure developed by Mielke et al. A comparison of groups 1 and 2 provided a test of the role of CCN concentrations in precipitation development in these cloud populations. A comparison of groups 3 and 4 provided a test of the role of GN concentrations in precipitation development in these cloud populations. The two cloud populations that were disjoint at a statistically significant level were groups 1 and 2. For these groups, the analysis showed that the median characteristic total water content of the truly maritime clouds (group 1) was about half that of the modified maritime clouds (group 2) at the time of precipitation formation. The characteristic time to precipitation formation was about 60% smaller for the truly maritime clouds. Thus, the characteristic reflectivity threshold for precipitation development was reached at a much lower altitude above cloud base in a much faster time in the truly maritime clouds. This result supports the conclusions of Hudson and Yum that precipitation development in the SCMS clouds was primarily controlled by CCN concentrations rather than GN concentrations.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3