Laboratory Measurements of Heat Transfer and Drag Coefficients at Extremely High Wind Speeds

Author:

Komori Satoru123,Iwano Koji4,Takagaki Naohisa5,Onishi Ryo2,Kurose Ryoichi3,Takahashi Keiko2,Suzuki Naoya6

Affiliation:

1. a Research Center for Highly-Functional Nanoparticles, Doshisha University, Kyotanabe, Japan

2. b Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan

3. c Department of Mechanical Engineering and Science, Kyoto University, Kyoto, Japan

4. d Department of Mechanical Systems Engineering, Nagoya University, Nagoya, Japan

5. e Department of Mechanical Engineering, University of Hyogo, Himeji, Japan

6. f Department of Mechanical Engineering, Kindai University, Higashiosaka, Japan

Abstract

AbstractHeat and momentum transfer across the wind-driven breaking air–water interface at extremely high wind speeds was experimentally investigated using a high-speed wind-wave tank. An original multi-heat-balance method was utilized to directly measure latent and sensible heat transfer coefficients. The results show that both heat transfer coefficients level off at low and normal wind speeds but increase sharply at extremely high wind speeds. The coefficients have a similar shape for wind speeds at a height of 10 m. Therefore, the wind speed dependence on the latent and sensible heat transfer coefficients can be represented by that of the enthalpy coefficient even in the extremely high-speed region. To show how significantly the drag and enthalpy coefficients affect the intensity of tropical cyclones, the coefficients were applied to Emanuel’s analytic model. The analytic model shows that the difference between the present laboratory and conventional correlations significantly affects the maximum storm intensity predictions, and the present laboratory enthalpy and drag coefficients have the remarkable effect on intensity promotion at extremely high wind speeds. In addition, the simulations of strong tropical cyclones using the Weather Research and Forecasting (WRF) Model with the present and conventional correlations are shown for reference in the appendix. The results obtained from the models suggest that it is of great importance to propose more reliable correlations, verified not only by laboratory but also by field experiments at extremely high wind speeds.

Funder

Japan Society for the Promotion of Science

Publisher

American Meteorological Society

Subject

Oceanography

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3