The Propagation of Internal Solitary Waves over Variable Topography in a Horizontally Two-Dimensional Framework

Author:

Yuan Chunxin1,Grimshaw Roger1,Johnson Edward1,Chen Xueen2

Affiliation:

1. Department of Mathematics, University College London, London, United Kingdom

2. College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao, China

Abstract

AbstractThis paper presents a horizontally two-dimensional theory based on a variable-coefficient Kadomtsev–Petviashvili equation, which is developed to investigate oceanic internal solitary waves propagating over variable bathymetry, for general background density stratification and current shear. To illustrate the theory, a typical monthly averaged density stratification is used for the propagation of an internal solitary wave over either a submarine canyon or a submarine plateau. The evolution is essentially determined by two components, nonlinear effects in the main propagation direction and the diffraction modulation effects in the transverse direction. When the initial solitary wave is located in a narrow area, the consequent spreading effects are dominant, resulting in a wave field largely manifested by a significant diminution of the leading waves, together with some trailing shelves of the opposite polarity. On the other hand, if the initial solitary wave is uniform in the transverse direction, then the evolution is more complicated, though it can be explained by an asymptotic theory for a slowly varying solitary wave combined with the generation of trailing shelves needed to satisfy conservation of mass. This theory is used to demonstrate that it is the transverse dependence of the nonlinear coefficient in the Kadomtsev–Petviashvili equation rather than the coefficient of the linear transverse diffraction term that determines how the wave field evolves. The Massachusetts Institute of Technology (MIT) general circulation model is used to provide a comparison with the variable-coefficient Kadomtsev–Petviashvili model, and good qualitative and quantitative agreements are found.

Funder

National Natural Science Foundation of China

National Key Research and Development Plan

Leverhulme Emeritus Fellowship

Taishan scholars program

Chinese Scholarship Council

UCL Dean's Prize

Publisher

American Meteorological Society

Subject

Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3