Spatial and Seasonal Variations of Submesoscale Eddies in the Eastern Tropical Pacific Ocean

Author:

Wang Shengpeng1,Jing Zhao1,Liu Hailong2,Wu Lixin1

Affiliation:

1. Physical Oceanography Laboratory/Collaborative Innovation Center of Marine Science and Technology, Ocean University of China, and Qingdao National Laboratory for Marine Science and Technology, Qingdao, China

2. State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Abstract

AbstractThe spatial and seasonal variations of submesoscale eddy activities in the eastern tropical Pacific Ocean (2°–12°N, 95°–165°W) are investigated based on a 1/10° ocean general circulation model (OGCM). In the studied region, it is found that motions shorter than 500 km are subject to submesoscale dynamics with an O(1) Rossby number and Richardson number and a −2 spectral slope for kinetic energy, suggesting that submesoscale eddies there can be well resolved by the model. Enhanced submesoscale eddy kinetic energy (SMKE) is found in the surface mixed layer centered at 5°N. A complete SMKE budget analysis suggests that the submesoscale eddies in the surface mixed layer are generated mainly by the barotropic instability and secondarily by the baroclinic instability. The nonlinear interactions lead to a significant forward energy cascade in the submesoscale range and play an important role in balancing the energy budget. As a response to the change of energy input through barotropic instability, the SMKE exhibits a pronounced seasonal cycle with the largest and smallest values occurring in boreal autumn and spring. Furthermore, the strong seasonal cycle plays an important role in modulating the seasonality of mixed layer depth (MLD). In particular, the restratification induced by the strong submesoscale eddies between July and October makes important contribution to the shoaling of MLD in this season.

Funder

National Natural Science Foundation of China

China National Global Change Major Research Project

Research Project of Chinese Ministry of Education

Publisher

American Meteorological Society

Subject

Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3