Evolution of Turbulence in the Diurnal Warm Layer

Author:

Moulin Aurélie J.1,Moum James N.1,Shroyer Emily L.1

Affiliation:

1. College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon

Abstract

AbstractThe daily evolution of temperature, stratification, and turbulence in the diurnal warm layer is described from time series measurements at low to moderate winds and strong insolation in the equatorial Indian Ocean. At 2.0-m depth, turbulence dissipation rates (ε) decreased by two orders of magnitude over 1–2 h immediately after sunrise, initiated by stratification caused by penetrating solar radiation prior to the change in sign of net surface heat flux from cooling to warming. Decaying turbulence preceded a period of rapid growth, in which ε increased by two orders of magnitude over a few hours, and following which ε approached a daytime period of near-steady state. Decay and growth rates predicted by a simplified turbulence model are consistent with those observed. During the daytime period of near-steady state, asymmetric temperature ramps were associated with enhanced ε, supporting the interpretation that this period represents a balance between buoyancy and shear production associated with a shear-driven response to trapping of momentum within the diurnal warm layer.

Funder

National Science Foundation

Office of Naval Research

Publisher

American Meteorological Society

Subject

Oceanography

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3