Life and Demise of Intrathermocline Mesoscale Vortices

Author:

Radko Timour1,Sisti Cassandra1

Affiliation:

1. Department of Oceanography, Naval Postgraduate School, Monterey, California

Abstract

AbstractThis study is focused on finescale dissipation mechanisms of intrathermocline mesoscale vortices exemplified by meddies, large anticyclonic salt lenses of Mediterranean origin commonly observed in the lower North Atlantic thermocline. High-resolution numerical experiments are diagnosed to quantify the rates of temperature and salinity (T, S) dispersion in salt lenses and to determine the relative contribution of various mixing processes in the decay of their thermohaline signatures. This study finds, in agreement with observations, that meddies dissipate on the characteristic time scale of several years and that their ultimate disintegration can be attributed to thermohaline interleaving driven by double-diffusive mixing. Mechanically generated turbulence, on the other hand, tends to suppress the interleaving and therefore has an adverse net effect on eddy dispersion. It is found that the dispersion properties of static lenses, characterized by density-compensated T–S patterns, and their rapidly rotating counterparts are dramatically different.

Funder

Division of Ocean Sciences

Publisher

American Meteorological Society

Subject

Oceanography

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3