Remotely Sensed Microphysical and Thermodynamic Properties of Nonuniform Water Cloud Fields

Author:

Harshvardhan 1,Guo Guang1,Green Robert N.1,Qu Zheng1,Nakajima Takashi Y.2

Affiliation:

1. Department of Earth and Atmospheric Sciences, Purdue University, West Lafayette, Indiana

2. JAXA Earth Observation Research and Application Center, Tokyo, Japan

Abstract

Abstract Visible and near-infrared reflected radiances have been used to estimate the cloud optical depth and effective radius of cloud-filled global area coverage (GAC) pixels from the Advanced Very High Resolution Radiometer (AVHRR) for two cases in the North Atlantic Ocean. One is representative of clouds having low concentrations of cloud condensation nuclei (CCN), while the other is an example of maritime clouds forming in continental air, in this case, intruding from Europe around a cutoff low pressure system. It is shown that an estimate of the cloud drop concentration can be obtained from remotely sensed cloud radiative properties and standard meteorological analyses. These concentrations show very clearly the influence of enhanced CCN on cloud microphysics. However, conclusions regarding the indirect radiative effect of aerosol on cloud must wait for the development of a framework for analyzing changes in cloud liquid water path (LWP). It is shown that estimates of LWP are greatly influenced by the scheme that is used to identify cloudy pixels at the AVHRR GAC resolution. Application of a very strict thermal channel spatial coherence criterion for identifying cloud-filled pixels yields mean LWP estimates for cloudy pixels alone that are 40%–75% higher than mean LWP estimates for the much larger sample of possibly cloudy pixels identified by a reflectance threshold criterion.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3