Affiliation:
1. Department of Earth, Ocean and Atmospheric Science, The Florida State University, Tallahassee, Florida
Abstract
Abstract
This paper focuses on potential vorticity (PV) budgets in the North Atlantic with an emphasis on the wind-driven subtropical gyre. Since PV is the key dynamical variable of the wind-driven circulation, these budgets are important to understand. PV is a conservative quantity on isopycnals and can only enter or exit through the boundaries, like the lateral topography or the surface. The latter fluxes are diagnosed and tested against the evolution of the PV content in an isopycnal layer. The former are computed using the Bernoulli function. The essential result is found for all the tested isopycnals, and the dominant feature of PV is recirculation, with very little added at the surface or the boundaries. Density coordinates are well suited to understanding PV circulation. A novel technique for computing the Bernoulli function is proposed. The Bernoulli function is governed by a simple elliptic equation and the solutions demonstrate the dominant contribution of PV advection.
Publisher
American Meteorological Society
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献