Decoupling of the Agulhas Leakage from the Agulhas Current

Author:

Loveday Benjamin R.1,Durgadoo Jonathan V.2,Reason Chris J. C.1,Biastoch Arne2,Penven Pierrick3

Affiliation:

1. Department of Oceanography, University of Cape Town, Cape Town, South Africa

2. GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany

3. LMI ICEMASA, Laboratoire de Physique des Océans, UMR 6523 (CNRS, IFREMER, IRD, UBO), Brest, France

Abstract

Abstract The relationship between the Agulhas Current and the Agulhas leakage is not well understood. Here, this is investigated using two basin-scale and two global ocean models of incrementally increasing resolution. The response of the Agulhas Current is evaluated under a series of sensitivity experiments, in which idealized anomalies, designed to geometrically modulate zonal trade wind stress, are applied across the Indian Ocean Basin. The imposed wind stress changes exceed plus or minus two standard deviations from the annual-mean trade winds and, in the case of intensification, are partially representative of recently observed trends. The Agulhas leakage is quantified using complimentary techniques based on Lagrangian virtual floats and Eulerian passive tracer flux. As resolution increases, model behavior converges and the sensitivity of the leakage to Agulhas Current transport anomalies is reduced. In the two eddy-resolving configurations tested, the leakage is insensitive to changes in Agulhas Current transport at 32°S, though substantial eddy kinetic energy anomalies are evident. Consistent with observations, the position of the retroflection remains stable. The decoupling of Agulhas Current variability from the Agulhas leakage suggests that while correlations between the two may exist, they may not have a clear dynamical basis. It is suggested that present and future Agulhas leakage proxies should be considered in the context of potentially transient forcing regimes.

Publisher

American Meteorological Society

Subject

Oceanography

Cited by 65 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3