Affiliation:
1. Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido, Japan
2. Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Hokkaido, Japan
Abstract
AbstractThis paper investigates the formation of eastward jets extended from western boundary currents, using a simple two-layer quasigeostrophic (QG) model forced by a wind stress curl consistent with the formation of a subtropical gyre. The study investigated the dependency of the latitude of the eastward jet on various parameters and on the meridional distribution of the Ekman pumping velocity. The parameters considered in the present study included the viscous and inertial western boundary layer width, the parameter representing the degree of the partial-slip boundary condition, the ratio of the upper- to lower-layer depth, and the bottom friction. With the parameters used, two types of stable structures are found in the time-mean field. One type of structure represented the “prematurely separated jet case,” in which the eastward extension jet was located far south of the northern boundary of the subtropical gyre, as is the Kuroshio Extension; the other type was the “gyre boundary jet case,” in which the eastward jet occurred along the northern boundary. The initial condition decides which type of structure would occur. When the prematurely separated jet case occurred, the authors found that the latitude of the eastward jet depended very little on the parameters. In addition, this study also observed that the latitude was determined by the meridional distribution of the Ekman pumping velocity. The eastward extension jet was usually located near the latitude that was half of the maximum value of the Sverdrup streamfunction and satisfied an integral condition derived from the QG potential vorticity equation.
Publisher
American Meteorological Society
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献