Affiliation:
1. Department of Oceanography, Naval Postgraduate School, Monterey, California
Abstract
Abstract
A theoretical model is developed, which attempts to predict the lateral transport by mesoscale variability, generated and maintained by baroclinic instability of large-scale flows. The authors are particularly concerned by the role of secondary instabilities of primary baroclinically unstable modes in the saturation of their linear growth. Theory assumes that the fully developed equilibrium state is characterized by the comparable growth rates of primary and secondary instabilities. This assumption makes it possible to formulate an efficient algorithm for evaluating the equilibrium magnitude of mesoscale eddies as a function of the background parameters: vertical shear, stratification, beta effect, and bottom drag. The proposed technique is applied to two classical models of baroclinic instability—the Phillips two-layer model and the linearly stratified Eady model. Theory predicts that the eddy-driven lateral mixing rapidly intensifies with increasing shear and weakens when the beta effect is increased. The eddy transport is also sensitive to the stratification pattern, decreasing as the ratio of upper/lower layer depths in the Phillips model is decreased below unity. Theory is successfully tested by a series of direct numerical simulations that span a wide parameter range relevant for typical large-scale currents in the ocean. The spontaneous emergence of large-scale patterns induced by mesoscale variability, and their role in the cross-flow eddy transport, is examined using a suite of numerical simulations.
Publisher
American Meteorological Society
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献